QuickSearch:   Number of matching entries: 11/11.

Search Settings

AuthorTitleYearJournal/ProceedingsDOI/URL
BibTeX:
@article{Wegener_HTM2021,
 author = {Thomas Wegener and Alexander Liehr and Artjom Bolender and Sebastian Degener and Felix Wittich and Andreas Kroll and Thomas
Niendorf},
 doi = {https://doi.org/10.1515/htm-2021-0023},
 journal = {HTM Journal of Heat Treatment and Materials},
 language = {english},
 mrtnote = {peer, HartDrehen},
 number = {2},
 owner = {wittich},
 pages = {156 -- 172},
 timestamp = {2021.11.07},
 title = {Calibration and validation of micromagnetic data for non-destructive analysis of near-surface properties after hard
turning},
 volume = {77},
 year = {2022}
}

BibTeX:
@inproceedings{WittichGMACI2021,
 author = {Felix Wittich and Andreas Kroll},
 booktitle = {31. Workshop Computational Intelligence},
 date = {2021},
 location = {Berlin},
 month = {25.-26. November},
 mrtnote = {nopeer, HartDrehen},
 organization = {GMA-FA 5.14},
 owner = {wittich},
 pages = {79-90},
 publisher = {KIT Scientific Publishing},
 timestamp = {2021.08.24},
 title = {Approximation der zulässigen Parametermenge bei der Bounded-Error-Schätzung durch ein Ray-Shooting-Verfahren},
 url = {https://doi.org/10.5445/KSP/1000138532},
 year = {2021}
}

Abstract: In data-driven modeling besides the point estimate of the model parameters, an estimation of the parameter uncertainty is of great interest. For this, bounded error parameter estimation methods can be used. These are particularly interesting for problems where the stochastical properties of the random effects are unknown and cannot be determined. In this paper, different methods for obtaining a feasible parameter set are evaluated for the use with Takagi-Sugeno models. Case studies with simulated data and with measured data from a manufacturing process are presented.
BibTeX:
@article{2021-FW-at-BE_TS_Methods,
 abstract = {In data-driven modeling besides the point estimate of the model parameters, an estimation of the parameter uncertainty is of great interest. For this, bounded error parameter estimation methods can be used. These are particularly interesting for problems where the stochastical properties of the random effects are unknown and cannot be determined. In this paper, different methods for obtaining a feasible parameter set are evaluated for the use with Takagi-Sugeno models. Case studies with simulated data and with measured data from a manufacturing process are presented.},
 author = {Felix Wittich and Andreas Kroll},
 journal = {at -- Automatisierungstechnik},
 journaltitle = {Computational Intelligence},
 language = {english},
 mrtnote = {peer,HartDrehen},
 number = {10},
 owner = {wittich},
 pages = {836--847},
 timestamp = {2020.11.06},
 title = {Evaluation of methods for feasible parameter set estimation of Takagi-Sugeno models for nonlinear regression with bounded
errors},
 url = {https://www.degruyter.com/document/doi/10.1515/auto-2020-0157/html},
 volume = {69},
 year = {2021}
}

BibTeX:
@inproceedings{Schott_CIRP2020,
 address = {Sheffield, UK},
 author = {Christopher Schott and Felix Wittich and Andreas Kroll and Thomas Niendorf},
 booktitle = {Procedia CIRP},
 doi = {10.1016/j.procir.2020.10.002},
 language = {english},
 mrtnote = {peer, HartDrehen},
 owner = {wittich},
 pages = {1-4},
 timestamp = {2020.02.10},
 title = {Prediction of near surface residual stress states for hard
turned specimens using data driven nonlinear
models},
 url = {https://www.sciencedirect.com/science/article/pii/S2212827121006429},
 volume = {101},
 year = {2021}
}

Abstract: In this article, two data-driven modeling approaches are investigated, which allow an explicit modeling of uncertainty. For this purpose, parametric Takagi-Sugeno multi-models with bounded-error parameter estimation and nonparametric Gaussian process regression are applied and compared. These models can for instance be used for robust model-based control design. As an application, the prediction of residual stresses during hard turning depending on the machining parameters and the initial hardness is considered.
BibTeX:
@article{2020-FW-TM-BE_GPR_HardTurning,
 abstract = {In this article, two data-driven modeling approaches are investigated, which allow an explicit modeling of uncertainty. For this purpose, parametric Takagi-Sugeno multi-models with bounded-error parameter estimation and nonparametric Gaussian process regression are applied and compared. These models can for instance be used for robust model-based control design. As an application, the prediction of residual stresses during hard turning depending on the machining parameters and the initial hardness is considered.},
 author = {Felix Wittich and Lars Kistner and Andreas Kroll and Christopher Schott and Thomas
Niendorf},
 doi = {10.1515/teme-2020-0057},
 journal = {tm -- Technisches Messen},
 language = {english},
 mrtnote = {peer,HartDrehen},
 owner = {wittich},
 pages = {732-741},
 timestamp = {2020.10.16},
 title = {On data-driven nonlinear uncertainty modeling: Methods and application for control-oriented surface condition prediction in hard
turning},
 url = {https://doi.org/10.1515/teme-2020-0057},
 volume = {87},
 year = {2020}
}

BibTeX:
@inproceedings{WittichSMC2019,
 address = {Bari, Italy},
 author = {Felix Wittich and Matthias Kahl and Andreas Kroll and Wolfgang Zinn and Thomas
Niendorf},
 booktitle = {IEEE International Conference on Systems, Man, and
Cybernetics (SMC 2019)},
 doi = {10.1109/SMC.2019.8914272},
 month = {06.-09. October},
 mrtnote = {peer,HartDrehen},
 organization = {IEEE},
 owner = {wittich},
 pages = {3235 -- 3240},
 timestamp = {2017.08.31},
 title = {On Nonlinear Empirical Modeling of Residual Stress
Profiles in Hard Turning},
 url = {https://doi.org/10.1109/SMC.2019.8914272},
 year = {2019}
}

BibTeX:
@inproceedings{WittichGMA2019,
 address = {Dortmund},
 author = {Felix Wittich and Matthias Kahl and Andreas Kroll},
 booktitle = {29. Workshop Computational Intelligence},
 doi = {10.5445/KSP/1000098736},
 month = {28.-29. November},
 mrtnote = {nopeer,HartDrehen},
 organization = {GMA-FA 5.14},
 owner = {wittich},
 pages = {247-254},
 publisher = {KIT Scientific Publishing},
 timestamp = {2017.08.31},
 title = {Zur Schätzung zulässiger Parametermengen nichtlinearer Takagi-Sugeno-Multi-Modelle mit garantierten
Fehlerschranken},
 year = {2019}
}

BibTeX:
@conference{WerkstoffWoche2019,
 author = {Felix Wittich},
 booktitle = {WerkstoffWoche 2019, Dresden},
 date = {2019.09.18},
 month = {September},
 mrtnote = {nopeer,HartDrehen},
 owner = {duerrbaum},
 timestamp = {2016.02.22},
 title = {Zur datengetriebenen Modellierung von
Eigenspannungen bei einem Hartdrehprozess},
 url = {https://www.werkstoffwoche.de/home/},
 year = {2019}
}

BibTeX:
@mastersthesis{MA_wittich_2019,
 address = {Universität Kassel},
 author = {Felix Wittich},
 month = {Dezember},
 mrtnote = {education,HartDrehen},
 mrtnr = {227},
 owner = {kahl},
 school = {FG Mess- und Regelungstechnik},
 supervisor = {#ak#},
 timestamp = {2018.04.09},
 title = {Zur Schätzung zulässiger Parametermengen bei nichtlinearen Takagi-Sugeno-Multi-Modellen mit garantierten Fehlerschranken: Methoden und fertigungstechnische
Anwendung},
 type = {Masterarbeit},
 url = {https://mrt-pc1.mrt.maschinenbau.uni-kassel.de/MRT/Lehre/Aufgabenstellungen/2019-Wittich-MA-Set_Membership_Hartdrehen.pdf},
 year = {2019}
}

BibTeX:
@inproceedings{WittichGMA2018,
 address = {Dortmund},
 author = {Felix Wittich and Matthias Gringard and Matthias Kahl and Andreas Kroll and Thomas Niendorf and Wolfgang
Zinn},
 booktitle = {28. Workshop Computational Intelligence},
 doit = {10.5445/KSP/1000085935},
 month = {29.-30. November},
 mrtnote = {nopeer,HartDrehen},
 organization = {GMA-FA 5.14},
 owner = {wittich},
 pages = {61 -- 81},
 publisher = {KIT Scientific Publishing},
 timestamp = {2017.08.31},
 title = {Datengetriebene Modellierung zur Prädiktion des Eigenspannungstiefenverlaufs beim
Hartdrehen},
 url = {https://www.rst.e-technik.tu-dortmund.de/cms/de/Veranstaltungen/GMA-Fachausschuss/index.html},
 year = {2018}
}

BibTeX:
@mastersthesis{BA_wittich_2018,
 address = {Universität Kassel},
 author = {Felix Wittich},
 month = {Februar},
 mrtnote = {education,HartDrehen},
 mrtnr = {218},
 owner = {kahl},
 school = {FG Mess- und Regelungstechnik},
 supervisor = {#ak#},
 timestamp = {2018.04.09},
 title = {Zur datengetriebenen Modellierung der Eigenspannungstiefenverteilung beim
Hartdrehen},
 type = {Bachelorarbeit},
 url = {https://mrt-pc1.mrt.maschinenbau.uni-kassel.de/MRT/Lehre/Aufgabenstellungen/2018-Wittich-BA-Identifikation_Hartdrehen.pdf},
 year = {2018}
}

Thomas Wegener, Alexander Liehr, Artjom Bolender, Sebastian Degener, Felix Wittich, Andreas Kroll, Thomas Niendorf Calibration and validation of micromagnetic data for non-destructive analysis of near-surface properties after hard turning 2022 HTM Journal of Heat Treatment and Materials, vol. 77, no. 2, pp. 156 - 172  DOI  
Christopher Schott, Felix Wittich, Andreas Kroll, Thomas Niendorf Prediction of near surface residual stress states for hard turned specimens using data driven nonlinear models 2021 Procedia CIRP, vol. 101, pp. 1-4, Sheffield, UK  DOI , URL  
Felix Wittich, Andreas Kroll Evaluation of methods for feasible parameter set estimation of Takagi-Sugeno models for nonlinear regression with bounded errors 2021 at - Automatisierungstechnik, vol. 69, no. 10, pp. 836-847  URL  
Felix Wittich, Andreas Kroll Approximation der zulässigen Parametermenge bei der Bounded-Error-Schätzung durch ein Ray-Shooting-Verfahren 2021 31. Workshop Computational Intelligence, pp. 79-90, KIT Scientific Publishing, GMA-FA 5.14, 25.-26. November  URL  
Felix Wittich, Lars Kistner, Andreas Kroll, Christopher Schott, Thomas Niendorf On data-driven nonlinear uncertainty modeling: Methods and application for control-oriented surface condition prediction in hard turning 2020 tm - Technisches Messen, vol. 87, pp. 732-741  DOI , URL  
Felix Wittich Zur Schätzung zulässiger Parametermengen bei nichtlinearen Takagi-Sugeno-Multi-Modellen mit garantierten Fehlerschranken: Methoden und fertigungstechnische Anwendung 2019 FG Mess- und Regelungstechnik, Universität Kassel, Masterarbeit, Dezember  URL  
Felix Wittich Zur datengetriebenen Modellierung von Eigenspannungen bei einem Hartdrehprozess 2019 WerkstoffWoche 2019, Dresden, September  URL  
Felix Wittich, Matthias Kahl, Andreas Kroll Zur Schätzung zulässiger Parametermengen nichtlinearer Takagi-Sugeno-Multi-Modelle mit garantierten Fehlerschranken 2019 29. Workshop Computational Intelligence, pp. 247-254, KIT Scientific Publishing, Dortmund, GMA-FA 5.14, 28.-29. November  DOI  
Felix Wittich, Matthias Kahl, Andreas Kroll, Wolfgang Zinn, Thomas Niendorf On Nonlinear Empirical Modeling of Residual Stress Profiles in Hard Turning 2019 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2019), pp. 3235 - 3240, Bari, Italy, IEEE, 06.-09. October  DOI , URL  
Felix Wittich Zur datengetriebenen Modellierung der Eigenspannungstiefenverteilung beim Hartdrehen 2018 FG Mess- und Regelungstechnik, Universität Kassel, Bachelorarbeit, Februar  URL  
Felix Wittich, Matthias Gringard, Matthias Kahl, Andreas Kroll, Thomas Niendorf, Wolfgang Zinn Datengetriebene Modellierung zur Prädiktion des Eigenspannungstiefenverlaufs beim Hartdrehen 2018 28. Workshop Computational Intelligence, pp. 61 - 81, KIT Scientific Publishing, Dortmund, GMA-FA 5.14, 29.-30. November  URL  

Created by JabRef on 03.04.25.