QuickSearch:   Number of matching entries: 0.

Search Settings

    AuthorTitleYearJournal/Proceedings DOI/URL
    Dürrbaum, A., Kahl, M., Himmelsbach, M. & Kroll, A. Toolbox zur Identifikation von Takagi-Sugeno-Fuzzy-Modellen 2021 at -- Automatisierungstechnik , Vol. 69 (Oktober) , pp. 915-916   DOI  
    BibTeX:
    	@article{2021-Duerrbaum-at-Forum_TS_Toolbox,
    	   author = {Axel Dürrbaum and Matthias Kahl and Matthias Himmelsbach and Andreas Kroll}
    	  , title = {Toolbox zur Identifikation von Takagi-Sugeno-Fuzzy-Modellen}
    	  
    	  , journal = {at -- Automatisierungstechnik}
    	  
    	  
    	  
    	  , year = {2021}
    	  , volume = {69}
    	  , number = {Oktober}
    	  , pages = {915--916}
    	  
    	  
    	  
    	  
    	  , doi = {https://doi.org/10.1515/auto-2021-0079}
    	  
    	  
    	   } 
    	
    Engelhardt, A., Kahl, M., Richter, J., Krooß, P., Kroll, A. & Niendorf, T. Investigation of processing windows in additive manufacturing of AlSi10Mg for faster production utilizing data-driven modelling 2022 Additive Manufacturing , Vol. 55 , Elsevier , 102858   DOI URL  
    BibTeX:
    	@article{ADDMA2021,
    	   author = {Engelhardt, A and Kahl, M and Richter, J and Krooß, P and Kroll, A and Niendorf, T}
    	  , title = {Investigation of processing windows in additive manufacturing of AlSi10Mg for faster production utilizing data-driven modelling}
    	  
    	  , journal = {Additive Manufacturing}
    	  , publisher = {Elsevier}
    	  
    	  
    	  , year = {2022}
    	  , volume = {55}
    	  
    	  
    	  
    	  
    	  , note = {102858}
    	  , url = {https://www.sciencedirect.com/science/article/pii/S2214860422002573}
    	  , doi = {https://doi.org/10.1016/j.addma.2022.102858}
    	  
    	  , issn = {2214-8604}
    	   } 
    	
    Kahl, M. Zur Strukturselektion bei dynamischen lokal-affinen Multi-Modellen mittels statistischer Methoden 2018 52. Regelungstechnisches Kolloquium, Boppard , 21.-23. Februar , Fraunhofer IOSB   URL  
    BibTeX:
    	@conference{Boppard2018,
    	   author = {Matthias Kahl}
    	  , title = {Zur Strukturselektion bei dynamischen lokal-affinen Multi-Modellen mittels statistischer Methoden}
    	  , booktitle = {52. Regelungstechnisches Kolloquium, Boppard}
    	  
    	  
    	  
    	  
    	  , year = {2018}
    	  
    	  
    	  
    	  
    	  
    	  
    	  , url = {https://www.iosb.fraunhofer.de/?boppard}
    	  
    	  
    	  
    	   } 
    	
    Kahl, M. Structure Identification of dynamical Takagi-Sugeno Fuzzy Models by using LPV Techniques 2018 European Conference on Data Analysis (ECDA), Paderborn, Germany , 4.-6. July   URL  
    BibTeX:
    	@conference{ECDA2018,
    	   author = {Matthias Kahl}
    	  , title = {Structure Identification of dynamical Takagi-Sugeno Fuzzy Models by using LPV Techniques}
    	  , booktitle = {European Conference on Data Analysis (ECDA), Paderborn, Germany}
    	  
    	  
    	  
    	  
    	  , year = {2018}
    	  
    	  
    	  
    	  
    	  
    	  
    	  , url = {www.ecda2018.de}
    	  
    	  
    	  
    	   } 
    	
    Kahl, M. & Kroll, A. Structure Identification of Dynamical Takagi-Sugeno Fuzzy Models by Using LPV Techniques 2018 Archives of Data Science, Series A (Online First) , Vol. 5 (1) , pp. A19, 17 S. online   DOI  
    BibTeX:
    	@article{ECDA2018_full,
    	   author = {Kahl, Matthias and Kroll, Andreas}
    	  , title = {Structure Identification of Dynamical Takagi-Sugeno Fuzzy Models by Using LPV Techniques}
    	  
    	  , journal = {Archives of Data Science, Series A (Online First)}
    	  
    	  
    	  
    	  , year = {2018}
    	  , volume = {5}
    	  , number = {1}
    	  , pages = {A19, 17 S. online}
    	  
    	  
    	  
    	  
    	  , doi = {https://doi.org/10.5445/KSP/1000087327/19}
    	  
    	  , issn = {2363-9881}
    	   } 
    	
    Kahl, M. & Kroll, A. Extending Regularized Least Squares Support Vector Machines for Order Selection of Dynamical Takagi-Sugeno Models 2020 IFAC-PapersOnLine 21th IFAC World Congress , Vol. 53 (2) , pp. 1182-1187 , Elsevier , Berlin, Germany , IFAC    
    Abstract: In this paper, the problem of order selection for nonlinear dynamical Takagi-Sugeno (TS) fuzzy models is adressed. It is solved by reformulating the TS model in its Linear Parameter Varying (LPV) form and applying an extension of a recently proposed Regularized Least Squares Support Vector Machine (R-LSSVM) technique for LPV models. For that, a nonparametric formulation of the TS identi
    cation problem is proposed which uses data-dependent basis functions. By doing so, the partition of unity of the TS model is preserved and the scheduling dependencies of the model are obtained in a nonparametric manner. For the local order selection, a regularization approach is used which forces the coeffcient functions of insignifcant values of the lagged input and output towards zero.
    BibTeX:
    	@inproceedings{Kahl-IFAC-2020,
    	   author = {Matthias Kahl and Andreas Kroll}
    	  , title = {Extending Regularized Least Squares Support Vector Machines for Order Selection of Dynamical Takagi-Sugeno Models}
    	  , booktitle = {21th IFAC World Congress}
    	  , journal = {IFAC-PapersOnLine}
    	  , publisher = {Elsevier}
    	  
    	  
    	  , year = {2020}
    	  , volume = {53}
    	  , number = {2}
    	  , pages = {1182--1187}
    	  , address = {Berlin, Germany}
    	  
    	  
    	  
    	  
    	  
    	  
    	   } 
    	
    Kahl, M., Kroll, A., Kästner, R. & Sofsky, M. Zur automatisierten Auswahl signifikanter Regressoren für die Identifikation eines dynamischen Ladedruckmodells 2014 24. Workshop Computational Intelligence , pp. 33-53 , Schriftenreihe des Instituts für Angewandte Informatik / Automatisierungstechnik , KIT Scientific Publishing , Dortmund , 27.-28. November , GMA-FA 5.14 "Computational Intelligence" und GI-FG "Fuzzy-Systeme und Soft-Computing"   DOI  
    BibTeX:
    	@inproceedings{KahlGMA2014,
    	   author = {Matthias Kahl and Andreas Kroll and Robert Kästner and Manfried Sofsky}
    	  , title = {Zur automatisierten Auswahl signifikanter Regressoren für die Identifikation eines dynamischen Ladedruckmodells}
    	  , booktitle = {24. Workshop Computational Intelligence}
    	  
    	  , publisher = {KIT Scientific Publishing}
    	  
    	  
    	  , year = {2014}
    	  
    	  
    	  , pages = {33-53}
    	  , address = {Dortmund}
    	  
    	  
    	  
    	  , doi = {https://doi.org/10.5445/KSP/1000043427}
    	  
    	  
    	   } 
    	
    Kahl, M., Kroll, A., Kästner, R. & Sofsky, M. On the selection of appropriate data from routine vehicle operation for system identification of a diesel engine gas system 2017 Automotive Data Analytics, Methods, DoE - Proceedings of the International Calibration Conference , pp. 283-299 , Berlin, Germany , May 11-12    
    BibTeX:
    	@inproceedings{KahlICC2017,
    	   author = {Matthias Kahl and Andreas Kroll and Robert Kästner and Manfried Sofsky}
    	  , title = {On the selection of appropriate data from routine vehicle operation for system identification of a diesel engine gas system}
    	  , booktitle = {Automotive Data Analytics, Methods, DoE - Proceedings of the International Calibration Conference}
    	  
    	  
    	  
    	  
    	  , year = {2017}
    	  
    	  
    	  , pages = {283-299}
    	  , address = {Berlin, Germany}
    	  
    	  
    	  
    	  
    	  
    	  
    	   } 
    	
    Kahl, M., Kroll, A., Kästner, R. & Sofsky, M. Application of model selection methods for the identification of a dynamic boost pressure model 2015 Proceedings of the 17th IFAC Symposium on System Identification (SysID) , pp. 829-834 , Beijing, China , October 19-21   DOI  
    BibTeX:
    	@inproceedings{KahlSysID2015,
    	   author = {Matthias Kahl and Andreas Kroll and Robert Kästner and Manfried Sofsky}
    	  , title = {Application of model selection methods for the identification of a dynamic boost pressure model}
    	  , booktitle = {Proceedings of the 17th IFAC Symposium on System Identification (SysID)}
    	  
    	  
    	  
    	  
    	  , year = {2015}
    	  
    	  
    	  , pages = {829-834}
    	  , address = {Beijing, China}
    	  
    	  
    	  
    	  , doi = {https://doi.org/10.1016/j.ifacol.2015.12.232}
    	  
    	  
    	   } 
    	
    Kahl, M., Schramm, S., Neumann, M. & Kroll, A. Identification of a Spatio-Temporal Temperature Model for Laser Metal Deposition 2021 Metals , Vol. November (12) , Multidisciplinary Digital Publishing Institute   DOI URL  
    BibTeX:
    	@article{kahl2021ident2dt,
    	   author = {Kahl, Matthias and Schramm, Sebastian and Neumann, Max and Kroll, Andreas}
    	  , title = {Identification of a Spatio-Temporal Temperature Model for Laser Metal Deposition}
    	  
    	  , journal = {Metals}
    	  , publisher = {Multidisciplinary Digital Publishing Institute}
    	  
    	  
    	  , year = {2021}
    	  , volume = {November}
    	  , number = {12}
    	  
    	  
    	  
    	  
    	  , url = {https://www.mdpi.com/2075-4701/11/12/2050}
    	  , doi = {https://doi.org/10.3390/met11122050}
    	  
    	  , issn = {2075-4701}
    	   } 
    	
    Schramm, S., Kahl, M. & Andreas, K. Experimentelle messtechnische Charakterisierung der Emissionsgradbestimmung mittels 3D-Thermografie 2021 FG Mess- und Regelungstechnik , Universität Kassel , August , Abschlussbericht   URL  
    BibTeX:
    	@techreport{Schramm2021WIPANO,
    	   author = {Schramm, Sebastian and Kahl, Matthias and Kroll Andreas}
    	  , title = {Experimentelle messtechnische Charakterisierung der Emissionsgradbestimmung mittels 3D-Thermografie}
    	  
    	  
    	  
    	  , school = {FG Mess- und Regelungstechnik}
    	  , type = {Abschlussbericht}
    	  , year = {2021}
    	  
    	  
    	  
    	  , address = {Universität Kassel}
    	  
    	  
    	  , url = {https://www.tib.eu/de/suchen/id/TIBKAT:1777149630}
    	  
    	  
    	  
    	   } 
    	
    Wittich, F., Gringard, M., Kahl, M., Kroll, A., Niendorf, T. & Zinn, W. Datengetriebene Modellierung zur Prädiktion des Eigenspannungstiefenverlaufs beim Hartdrehen 2018 28. Workshop Computational Intelligence , pp. 61 - 81 , KIT Scientific Publishing , Dortmund , 29.-30. November , GMA-FA 5.14   URL  
    BibTeX:
    	@inproceedings{WittichGMA2018,
    	   author = {Felix Wittich and Matthias Gringard and Matthias Kahl and Andreas Kroll and Thomas Niendorf and Wolfgang Zinn}
    	  , title = {Datengetriebene Modellierung zur Prädiktion des Eigenspannungstiefenverlaufs beim Hartdrehen}
    	  , booktitle = {28. Workshop Computational Intelligence}
    	  
    	  , publisher = {KIT Scientific Publishing}
    	  
    	  
    	  , year = {2018}
    	  
    	  
    	  , pages = {61 -- 81}
    	  , address = {Dortmund}
    	  
    	  
    	  , url = {https://www.rst.e-technik.tu-dortmund.de/cms/de/Veranstaltungen/GMA-Fachausschuss/index.html}
    	  
    	  
    	  
    	   } 
    	
    Wittich, F., Kahl, M. & Kroll, A. Zur Schätzung zulässiger Parametermengen nichtlinearer Takagi-Sugeno-Multi-Modelle mit garantierten Fehlerschranken 2019 29. Workshop Computational Intelligence , pp. 247-254 , KIT Scientific Publishing , Dortmund , 28.-29. November , GMA-FA 5.14   DOI  
    BibTeX:
    	@inproceedings{WittichGMA2019,
    	   author = {Felix Wittich and Matthias Kahl and Andreas Kroll}
    	  , title = {Zur Schätzung zulässiger Parametermengen nichtlinearer Takagi-Sugeno-Multi-Modelle mit garantierten Fehlerschranken}
    	  , booktitle = {29. Workshop Computational Intelligence}
    	  
    	  , publisher = {KIT Scientific Publishing}
    	  
    	  
    	  , year = {2019}
    	  
    	  
    	  , pages = {247-254}
    	  , address = {Dortmund}
    	  
    	  
    	  
    	  , doi = {https://doi.org/10.5445/KSP/1000098736}
    	  
    	  
    	   } 
    	
    Wittich, F., Kahl, M., Kroll, A., Zinn, W. & Niendorf, T. On Nonlinear Empirical Modeling of Residual Stress Profiles in Hard Turning 2019 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2019) , pp. 3235 - 3240 , Bari, Italy , 06.-09. October , IEEE    
    BibTeX:
    	@inproceedings{WittichSMC2019,
    	   author = {Felix Wittich and Matthias Kahl and Andreas Kroll and Wolfgang Zinn and Thomas Niendorf}
    	  , title = {On Nonlinear Empirical Modeling of Residual Stress Profiles in Hard Turning}
    	  , booktitle = {IEEE International Conference on Systems, Man, and Cybernetics (SMC 2019)}
    	  
    	  
    	  
    	  
    	  , year = {2019}
    	  
    	  
    	  , pages = {3235 -- 3240}
    	  , address = {Bari, Italy}
    	  
    	  
    	  
    	  
    	  
    	  
    	   } 
    	

    Created by JabRef on 24/03/2023.