Author | Title | Year | Journal/Proceedings | DOI/URL | |
---|---|---|---|---|---|
Miguel Mendez, Sebastian Schramm, Robert Schmoll, Andreas Kroll | Integration and Evaluation of a High-Precision MotionCam-3D into a 3D Thermography System [BibTeX] |
2023 | Journal of Sensors and Sensor Systems (JSSS) | DOI , URL | |
BibTeX: @article{Mendez2023c, author = {Miguel Mendez and Sebastian Schramm and Robert Schmoll and Andreas Kroll}, doi = {10.5194/jsss-13-123-2024}, journal = {Journal of Sensors and Sensor Systems (JSSS)}, mrtnote = {peer}, owner = {mendez}, title = {Integration and Evaluation of a High-Precision MotionCam-3D into a 3D Thermography System}, url = {https://jsss.copernicus.org/articles/13/123/2024/}, year = {2023} } |
|||||
Miguel Mendez, Sebastian Schramm, Robert Schmoll, Andreas Kroll | Integration of a High-Precision 3D Sensor into a 3D Thermography System [BibTeX] |
2023 | Sensor and Measurement Science International Conference (SMSI) 2023, Nürnberg, AMA Verband für Sensorik und Messtechnik e.V., May | DOI | |
BibTeX: @inproceedings{Mendez2023a, address = {Nürnberg}, author = {Miguel Mendez and Sebastian Schramm and Robert Schmoll and Andreas Kroll}, booktitle = {Sensor and Measurement Science International Conference (SMSI) 2023}, date = {2023}, doi = {10.5162/SMSI2023/E5.2}, month = {May}, mrtnote = {nopeer}, organization = {AMA Verband für Sensorik und Messtechnik e.V.}, owner = {Mendez}, timestamp = {2023.01.31}, title = {Integration of a High-Precision 3D Sensor into a 3D Thermography System}, year = {2023} } |
|||||
Sebastian Schramm | Bewertung der Zukunftsthemen Thermografie [BibTeX] |
2022 | no. TR-030, Universität Kassel, Technischer Bericht | ||
BibTeX: @techreport{ZukunftThermografie2022, address = {Universität Kassel}, author = {Sebastian Schramm}, institution = {FG Mess- und Regelungstechnik}, mrtnr = {TR-030}, number = {TR-030}, title = {Bewertung der Zukunftsthemen Thermografie}, type = {Technischer Bericht}, year = {2022} } |
|||||
Schramm, Sebastian, Osterhold, Phil, Schmoll, Robert, Kroll, Andreas | Combining Modern 3D Reconstruction and Thermal Imaging: Generation of Large-Scale 3D Thermograms in Real-Time | 2022 | Quantitative InfraRed Thermography Journal, vol. 19, no. 5, pp. 295-311 | DOI | |
Abstract: In recent years, due to the availability of affordable 3D sensors and the increased computing power, various methods for the generation of 3D thermograms have been developed. 3D thermal imaging describes the fusion of geometry and temperature data. A well-established approach is the fusion of data from depth and long-wave infrared (LWIR) cameras. However, these models generated in real-time have the limitation that the model size is limited due to inefficient data storage approach. Newer algorithms from Computer Vision promise to overcome this limitation by more efficient data handling and storage. Within this work, three state of the art 3D reconstruction algorithms from the computer vision community are compared and one of these is extended by overlaying thermal data, which allows the creation of large-scale 3D thermograms with a portable 3D measurement system. For this purpose, a geometric calibration is required, the data structure is adapted, and the handling of cyclic non-uniformity corrections required for uncooled LWIR cameras is described. The results will show exemplary 3D thermograms and the advantages compared to current existing systems. | |||||
BibTeX: @article{2022-Schramm-QIRT, abstract = {In recent years, due to the availability of affordable 3D sensors and the increased computing power, various methods for the generation of 3D thermograms have been developed. 3D thermal imaging describes the fusion of geometry and temperature data. A well-established approach is the fusion of data from depth and long-wave infrared (LWIR) cameras. However, these models generated in real-time have the limitation that the model size is limited due to inefficient data storage approach. Newer algorithms from Computer Vision promise to overcome this limitation by more efficient data handling and storage. Within this work, three state of the art 3D reconstruction algorithms from the computer vision community are compared and one of these is extended by overlaying thermal data, which allows the creation of large-scale 3D thermograms with a portable 3D measurement system. For this purpose, a geometric calibration is required, the data structure is adapted, and the handling of cyclic non-uniformity corrections required for uncooled LWIR cameras is described. The results will show exemplary 3D thermograms and the advantages compared to current existing systems.}, author = {Schramm, Sebastian and Osterhold, Phil and Schmoll, Robert and Kroll, Andreas}, doi = {10.1080/17686733.2021.1991746}, journal = {Quantitative InfraRed Thermography Journal}, keywords = {3D thermal imaging; sensor data fusion; LWIR; NIR;3D reconstruction}, language = {english}, mrtnote = {peer, ThermoFusion}, number = {5}, pages = {295--311}, title = {Combining Modern 3D Reconstruction and Thermal Imaging: Generation of Large-Scale 3D Thermograms in Real-Time}, volume = {19}, year = {2022} } |
|||||
Schramm, Sebastian, Ebert, Jannik, Schmoll, Robert, Kroll, Andreas | Compensating the Size-of-Source Effect: Relationship between the MTF and a Data-Driven Convolution Filter Approach [BibTeX] |
2022 | 16th Quantitative InfraRed Thermography Conference (QIRT), Paris, Frankreich, 4.-8. Juli | DOI , URL | |
BibTeX: @inproceedings{SchrammQIRT2022, address = {Paris, Frankreich}, author = {Schramm, Sebastian and Ebert, Jannik and Schmoll, Robert and Kroll, Andreas}, booktitle = {16th Quantitative InfraRed Thermography Conference (QIRT)}, doi = {10.21611/qirt.2022.1001}, language = {english}, month = {4.-8. Juli}, mrtnote = {nopeer,ThermoFusion}, owner = {schramm}, title = {Compensating the Size-of-Source Effect: Relationship between the MTF and a Data-Driven Convolution Filter Approach}, url = {http://qirt.org/archives/qirt2022/papers/1001.pdf}, year = {2022} } |
|||||
Schmoll, Robert, Schramm, Sebastian, Breitenstein, Tom, Kroll, Andreas | Method and Experimental Investigation of Surface Heat Dissipation Measurement using 3D Thermography [BibTeX] |
2022 | Journal of Sensors and Sensor Systems (JSSS), vol. 11, pp. 41-49 | DOI , URL | |
BibTeX: @article{SchmollJSSS2021, author = {Schmoll, Robert and Schramm, Sebastian and Breitenstein, Tom and Kroll, Andreas}, doi = {10.5194/jsss-11-41-2022}, journal = {Journal of Sensors and Sensor Systems (JSSS)}, owner = {schmoll}, pages = {41--49}, title = {Method and Experimental Investigation of Surface Heat Dissipation Measurement using 3D Thermography}, url = {https://jsss.copernicus.org/articles/11/41/2022/}, volume = {11}, year = {2022} } |
|||||
Sebastian Schramm, S. Altenburg, R. Krankenhagen, C. Maierhofer, E. Marquardt, W. Mühlberger, F. Nagel, E. Neumann, P. Rohwetter, F. Rutz, N. Scheuschner, C. Schwake, F. Schwaneberg, R. D. Taubert, M. Ziegler | Thermografie und Strahlungsthermometrie - Stand und Trends [BibTeX] |
2021 | GMA Fachausschuss 8.16: Temperaturmessung mit Wärmebildkameras, Juni | URL | |
BibTeX: @article{GMA_Schramm_2021, author = {Sebastian Schramm and S. Altenburg and R. Krankenhagen and C. Maierhofer and E. Marquardt and W. Mühlberger and F. Nagel and E. Neumann and P. Rohwetter and F. Rutz and N. Scheuschner and C. Schwake and F. Schwaneberg and R. D. Taubert and M. Ziegler}, booktitle = {GMA Fachausschuss 8.16: Temperaturmessung mit Wärmebildkameras}, institution = {VDI/VDE-Gesellsschaft Mess- und Automatisierungstechnik}, month = {Juni}, mrtnote = {nopeer}, owner = {schramm}, title = {Thermografie und Strahlungsthermometrie - Stand und Trends}, url = {https://www.vdi.de/ueber-uns/presse/publikationen/details/thermografie-und-strahlungsthermometrie-stand-und-trends}, year = {2021} } |
|||||
Sebastian Schramm, Jannik Ebert, Johannes Rangel, Robert Schmoll, Andreas Kroll | Iterative feature detection of a coded checkerboard target for the geometric calibration of infrared cameras [BibTeX] |
2021 | Journal of Sensors and Sensor Systems (JSSS), vol. 10, pp. 207-218 | DOI , URL | |
BibTeX: @article{Schramm2021JSSS, author = {Sebastian Schramm and Jannik Ebert and Johannes Rangel and Robert Schmoll and Andreas Kroll}, doi = {10.5194/jsss-10-207-2021}, journal = {Journal of Sensors and Sensor Systems (JSSS)}, mrtnote = {peer, ThermoFusion}, pages = {207--218}, title = {Iterative feature detection of a coded checkerboard target for the geometric calibration of infrared cameras}, url = {https://jsss.copernicus.org/articles/10/207/2021/}, volume = {10}, year = {2021} } |
|||||
Schramm, Sebastian, Rangel, Johannes, Aguirre Salazar, Daniela, Schmoll, Robert, Kroll, Andreas | Target Analysis for the Multispectral Geometric Calibration of Cameras in Visual and Infrared Spectral Range [BibTeX] |
2021 | IEEE Sensors Journal, vol. 21, no. 2, pp. 2159-2168 | DOI , URL | |
BibTeX: @article{SchrammRangel2021, author = {Schramm, Sebastian and Rangel, Johannes and Aguirre Salazar, Daniela and Schmoll, Robert and Kroll, Andreas}, doi = {10.1109/JSEN.2020.3019959}, journal = {IEEE Sensors Journal}, mrtnote = {peer,Gas3D, ThermoFusion}, number = {2}, pages = {2159-2168}, title = {Target Analysis for the Multispectral Geometric Calibration of Cameras in Visual and Infrared Spectral Range}, url = {https://ieeexplore.ieee.org/document/9178752}, volume = {21}, year = {2021} } |
|||||
Schramm, Sebastian, Kahl, Matthias, Kroll Andreas | Experimentelle messtechnische Charakterisierung der Emissionsgradbestimmung mittels 3D-Thermografie [BibTeX] |
2021 | Universität Kassel, Abschlussbericht, August | URL | |
BibTeX: @techreport{Schramm2021WIPANO, address = {Universität Kassel}, author = {Schramm, Sebastian and Kahl, Matthias and Kroll Andreas}, institution = {FG Mess- und Regelungstechnik}, month = {August}, mrtnr = {TR-031}, owner = {schramm}, timestamp = {2021.08.27}, title = {Experimentelle messtechnische Charakterisierung der Emissionsgradbestimmung mittels 3D-Thermografie}, type = {Abschlussbericht}, url = {https://www.tib.eu/de/suchen/id/TIBKAT:1777149630}, year = {2021} } |
|||||
Schmoll, Robert, Schramm, Sebastian, Breitenstein, Tom, Kroll, Andreas | 3D Thermography for the Measurement of Surface Heat Dissipation [BibTeX] |
2021 | Sensor and Measurement Science International Conference (SMSI) 2021, pp. 187-188, online, AMA Verband für Sensorik und Messtechnik e.V., 03.-06. May | DOI , URL | |
BibTeX: @inproceedings{SchmollSMSI2021, address = {online}, author = {Schmoll, Robert and Schramm, Sebastian and Breitenstein, Tom and Kroll, Andreas}, booktitle = {Sensor and Measurement Science International Conference (SMSI) 2021}, doi = {10.5162/SMSI2021/C2.4}, month = {03.-06. May}, organization = {AMA Verband für Sensorik und Messtechnik e.V.}, owner = {schmoll}, pages = {187--188}, timestamp = {2021.01.06}, title = {3D Thermography for the Measurement of Surface Heat Dissipation}, url = {https://www.ama-science.org/proceedings/details/4005}, year = {2021} } |
|||||
Marquardt, Erik, Nagel, Frank, Schwake, Christian, Schramm, Sebastian, Schwaneberg, Falko | Leckageortung mittels Thermografiekameras [BibTeX] |
2021 | Technische Sicherheit, vol. November, no. 09-10, pp. 32-33 | DOI , URL | |
BibTeX: @article{Schramm2021TS, author = {Marquardt, Erik and Nagel, Frank and Schwake, Christian and Schramm, Sebastian and Schwaneberg, Falko}, doi = {10.37544/2191-0073-2021-09-10-32}, journal = {Technische Sicherheit}, language = {german}, mrtnote = {nopeer}, number = {09-10}, owner = {schramm}, pages = {32--33}, timestamp = {2021.10.06}, title = {Leckageortung mittels Thermografiekameras}, url = {https://elibrary.vdi-verlag.de/10.37544/2191-0073-2021-09-10-32/leckageortung-mittels-thermografiekameras-jahrgang-11-2021-heft-09-10}, volume = {November}, year = {2021} } |
|||||
Kahl, Matthias, Schramm, Sebastian, Neumann, Max, Kroll, Andreas | Identification of a Spatio-Temporal Temperature Model for Laser Metal Deposition [BibTeX] |
2021 | Metals, vol. November, no. 12, Multidisciplinary Digital Publishing Institute | DOI , URL | |
BibTeX: @article{kahl2021ident2dt, article-number = {2050}, author = {Kahl, Matthias and Schramm, Sebastian and Neumann, Max and Kroll, Andreas}, doi = {10.3390/met11122050}, issn = {2075-4701}, journal = {Metals}, mrtnote = {peer, DigiWerk}, number = {12}, publisher = {Multidisciplinary Digital Publishing Institute}, title = {Identification of a Spatio-Temporal Temperature Model for Laser Metal Deposition}, url = {https://www.mdpi.com/2075-4701/11/12/2050}, volume = {November}, year = {2021} } |
|||||
Schramm, Sebastian, Osterhold, Phil, Schmoll, Robert, Kroll, Andreas | Generation of Large-Scale 3D Thermograms in Real-Time Using Depth and Infrared Cameras [BibTeX] |
2020 | 15th Quantitative InfraRed Thermography Conference (QIRT), Porto, Portugal, 6.-10. Juli | DOI , URL | |
BibTeX: @inproceedings{SS_QIRT2020, address = {Porto, Portugal}, author = {Schramm, Sebastian and Osterhold, Phil and Schmoll, Robert and Kroll, Andreas}, booktitle = {15th Quantitative InfraRed Thermography Conference (QIRT)}, doi = {10.21611/qirt.2020.008}, language = {english}, month = {6.-10. Juli}, mrtnote = {nopeer,ThermoFusion}, owner = {schramm}, timestamp = {2019.12.16}, title = {Generation of Large-Scale 3D Thermograms in Real-Time Using Depth and Infrared Cameras}, url = {https://qirt.org/archives/qirt2020/papers/008.pdf}, year = {2020} } |
|||||
Sebastian Schramm, Robert Schmoll, Andreas Kroll | Compensation of the Size-of-Source Effect of Infrared Cameras Using Image Processing Methods [BibTeX] |
2019 | 13th International Conference on Sensing Technology (ICST), Sydney, Australia, 2.-4. Dezember | DOI , URL | |
BibTeX: @inproceedings{SS_ICST2019, address = {Sydney, Australia}, author = {Sebastian Schramm and Robert Schmoll and Andreas Kroll}, booktitle = {13th International Conference on Sensing Technology (ICST)}, doi = {10.1109/ICST46873.2019.9047669}, language = {english}, month = {2.-4. Dezember}, mrtnote = {peer,ThermoFusion}, owner = {schramm}, timestamp = {2017.11.14}, title = {Compensation of the Size-of-Source Effect of Infrared Cameras Using Image Processing Methods}, url = {https://ieeexplore.ieee.org/document/9047669}, year = {2019} } |
|||||
Sebastian Schramm | 3D-Thermografie: Systeme, Verfahren und Anwendungen [BibTeX] |
2019 | GMA Fachausschuss 8.16: Temperaturmessung mit Wärmebildkameras, VDI/VDE, Januar | URL | |
BibTeX: @conference{GMA_Schramm_2019, author = {Sebastian Schramm}, booktitle = {GMA Fachausschuss 8.16: Temperaturmessung mit Wärmebildkameras}, date = {2019.01.29}, month = {Januar}, mrtnote = {nopeer}, organization = {VDI/VDE}, owner = {scrhamm}, timestamp = {06.09.2019}, title = {3D-Thermografie: Systeme, Verfahren und Anwendungen}, url = {https://www.vdi.de/tg-fachgesellschaften/vdi-gesellschaft-mess-und-automatisierungstechnik/optische-technologien}, year = {2019} } |
|||||
Kroll, Andreas, Schramm, Sebastian | Verfahren und Vorrichtung zum Erzeugen eines 3D-Thermogramms | 2019 | no. DE 10 2019 113 691 B4, Universität Kassel, Patent, EP 3742136 A1 | URL | |
Abstract: Gegenstand der Erfindung ist ein Verfahren und eine Vorrichtung zum Erzeugen eines dreidimensionalen Thermogramms einer Objektoberfläche (10), wobei das Verfahren wenigstens die folgenden Schritte umfasst:- Erfassen (100) von geometrischen Daten eines Objekts (1) und Erstellen eines dreidimensionalen Modells des Objekts (1) anhand der erfassten geometrischen Daten,- Erfassen (200) von Wärmestrahlungsmesswerten für Aufpunkte (11) auf der Objektoberfläche (10), wobei je Aufpunkt (11) eine Mehrzahl von Wärmestrahlungsmesswerten aus unterschiedlichen Blickrichtungen (30) auf die Objektoberfläche (10) erfasst wird,- Zuordnen (300) der Wärmestrahlungsmesswerte für die Aufpunkte (11) auf der Objektoberfläche zu Aufpunkten auf der zugehörigen Oberfläche des dreidimensionalen Modells des Objekts (1), wobei jedem Wärmestrahlungsmesswert ein Zenitwinkel (2) zwischen der Blickrichtung (30) und der Oberflächennormale (12) im zugehörigen Aufpunkt (11) zugeordnet wird,- Modellieren (400) des Emissionsgrades der Objektoberfläche (10) je Aufpunkt (11) anhand der Abhängigkeit der Wärmestrahlungsmesswerte von den zugehörigen Zenitwinkeln (2), und- Modellieren (500) der Temperatur der Objektoberfläche (10) je Aufpunkt (11) anhand der Wärmestrahlungsmesswerte, der Zenitwinkel (2) und des Emissionsgrades, und Ausgeben (501) des dreidimensionalen Thermogramms. | |||||
BibTeX: @misc{DPatent2019, abstract = {Gegenstand der Erfindung ist ein Verfahren und eine Vorrichtung zum Erzeugen eines dreidimensionalen Thermogramms einer Objektoberfläche (10), wobei das Verfahren wenigstens die folgenden Schritte umfasst:- Erfassen (100) von geometrischen Daten eines Objekts (1) und Erstellen eines dreidimensionalen Modells des Objekts (1) anhand der erfassten geometrischen Daten,- Erfassen (200) von Wärmestrahlungsmesswerten für Aufpunkte (11) auf der Objektoberfläche (10), wobei je Aufpunkt (11) eine Mehrzahl von Wärmestrahlungsmesswerten aus unterschiedlichen Blickrichtungen (30) auf die Objektoberfläche (10) erfasst wird,- Zuordnen (300) der Wärmestrahlungsmesswerte für die Aufpunkte (11) auf der Objektoberfläche zu Aufpunkten auf der zugehörigen Oberfläche des dreidimensionalen Modells des Objekts (1), wobei jedem Wärmestrahlungsmesswert ein Zenitwinkel (2) zwischen der Blickrichtung (30) und der Oberflächennormale (12) im zugehörigen Aufpunkt (11) zugeordnet wird,- Modellieren (400) des Emissionsgrades der Objektoberfläche (10) je Aufpunkt (11) anhand der Abhängigkeit der Wärmestrahlungsmesswerte von den zugehörigen Zenitwinkeln (2), und- Modellieren (500) der Temperatur der Objektoberfläche (10) je Aufpunkt (11) anhand der Wärmestrahlungsmesswerte, der Zenitwinkel (2) und des Emissionsgrades, und Ausgeben (501) des dreidimensionalen Thermogramms.}, address = {Universität Kassel}, assignee = {Universität Kassel}, author = {Kroll, Andreas and Schramm, Sebastian}, language = {german}, mrtnote = {patent}, nationality = {Deutsch}, note = {EP 3742136 A1}, number = {DE 10 2019 113 691 B4}, owner = {schramm}, title = {Verfahren und Vorrichtung zum Erzeugen eines 3D-Thermogramms}, type = {Patent}, url = {https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102019113691B4}, year = {2019} } |
|||||
Sebastian Schramm, Johannes Rangel, Andreas Kroll | Data Fusion for 3D Thermal Imaging Using Depth and Stereo Camera for Robust Self-localization [BibTeX] |
2018 | IEEE Sensors Applications Symposium (SAS), Seoul, Korea, 12.-14. März | DOI , URL | |
BibTeX: @inproceedings{SS_SAS2018, address = {Seoul, Korea}, author = {Sebastian Schramm and Johannes Rangel and Andreas Kroll}, booktitle = {IEEE Sensors Applications Symposium (SAS)}, doi = {https://doi.org/10.1109/SAS.2018.8336740}, language = {english}, month = {12.-14. März}, mrtnote = {peer,ThermoFusion}, owner = {schramm}, timestamp = {2017.11.14}, title = {Data Fusion for 3D Thermal Imaging Using Depth and Stereo Camera for Robust Self-localization}, url = {https://ieeexplore.ieee.org/document/8336740/}, year = {2018} } |
|||||
Sebastian Schramm | Zur verbesserten Selbstlokalisation eines 3-D- Thermographie-Messsystems mittels Ergänzung von Stereokameradaten [BibTeX] |
2017 | FG Mess- und Regelungstechnik, Universität Kassel, Masterarbeit, Juli | URL | |
BibTeX: @mastersthesis{MA_schramm_2017, address = {Universität Kassel}, author = {Sebastian Schramm}, month = {Juli}, mrtnote = {education}, mrtnr = {194}, owner = {rangel}, school = {FG Mess- und Regelungstechnik}, supervisor = {#jr#}, timestamp = {2016.10.06}, title = {Zur verbesserten Selbstlokalisation eines 3-D- Thermographie-Messsystems mittels Ergänzung von Stereokameradaten}, type = {Masterarbeit}, url = {https://mrt-pc1.mrt.maschinenbau.uni-kassel.de/MRT/Lehre/Aufgabenstellungen/2016-Schramm-MA-3dThermo.pdf}, year = {2017} } |
|||||
Sebastian Schramm | Bestimmung von Geschwindigkeiten aus Bildserien einer Gaskamera [BibTeX] |
2015 | FG Mess- und Regelungstechnik, Universität Kassel, Bachelorarbeit, März | URL | |
BibTeX: @mastersthesis{2015-Schramm-BA-Geschwindigkeit, address = {Universität Kassel}, author = {Sebastian Schramm}, month = {März}, mrtnote = {education, BioGas}, mrtnr = {150}, owner = {dierks}, school = {FG Mess- und Regelungstechnik}, supervisor = {#sd#}, timestamp = {2015.02.03}, title = {Bestimmung von Geschwindigkeiten aus Bildserien einer Gaskamera}, type = {Bachelorarbeit}, url = {https://mrt-pc1.mrt.maschinenbau.uni-kassel.de/MRT/Lehre/Aufgabenstellungen/2015-Schramm-BA-Geschwindigkeit.pdf}, year = {2015} } |
|||||
Sebastian Schramm | Erstellung und Implementierung eines Visualisierungskonzepts zur Bedienung einer Prozessinsel [BibTeX] |
2014 | FG Mess- und Regelungstechnik, Universität Kassel, Semesterarbeit, Oktober | ||
BibTeX: @mastersthesis{Schramm2014, address = {Universität Kassel}, author = {Sebastian Schramm}, month = {Oktober}, mrtnote = {education, muPlant}, mrtnr = {128}, owner = {geiger}, school = {FG Mess- und Regelungstechnik}, supervisor = {#ag#}, timestamp = {2011.04.11}, title = {Erstellung und Implementierung eines Visualisierungskonzepts zur Bedienung einer Prozessinsel}, type = {Semesterarbeit}, year = {2014} } |
Created by JabRef on 20.11.24.